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Abstract— This paper presents a methodology for the decen-
tralised control of multiple 3-dimensional nonholonomic agents.
The proposed control scheme is based on Navigation Functions
and offers improvements compared to previous work of the
authors in this field. The problem formulation is chosen to
resemble Air-Traffic Management, where the safety guarantees
provided by Navigation Functions based control strategies are
very important. The linear velocity of each agent is maintained
constant and equal to a desired value in most cases, while the
azimuth and elevation control laws are engineered to reduce
the required control effort. These qualitative improvements do

not affect the collision avoidance characteristics of the control
strategy. The performance and efficiency of our approach is
supported by computer simulations presented in the paper.

I. INTRODUCTION

Navigation of multiple nonholonomic vehicles is gaining

a lot of interest from a control perspective, since it poses a

practical, yet challenging problem. Uninhabitated (Ground,

Underwater, Aerial) vehicles (UGVs, UAVs, AUVs) and Air

Traffic Management (ATM) are some of the most impor-

tant applications involving nonholonomic agents. Automated

ATM, in particular, poses additional difficulties, as the avail-

able control inputs are severely limited due to the aircraft’s

maneuvering capabilities, while effective collision avoidance

is most important for flight safety.

The unicycle is usually used to model nonholonomic

vehicles, and a variety of methods have been proposed for the

control of unicycle-like agents with limited control capacity:

Carbone et. al. [1] employ the collision cone concept using

one control input (either turn, descent/climb or change the

speed), but have not provided any formal guarantee for

collision avoidance. Lalish et. al. [2] have also used the

collision cone concept in a decentralised algorithm which

considers actuation limits, but can not guarantee safe colli-

sion avoidance from any initial conditions. Oikonomopoulos

et. al. [3] have addressed the problem in a discrete and

centralised manner, where actuation limits are satisfied but

with an associated high computational cost.

Potential fields, and Navigation Functions [4] in particular

have been used for decentralised navigation of planar non-

holonmic agents [5], while an extension to 3-dimensional

space has been recently proposed [6]. The main advantage

of Navigation Functions based methods is the solid formal

proof they can provide to support their performance. Con-

straint satisfaction is very important for certain applications,
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such as Air Traffic Control. However, integration of input

constraints has so far been only limited. In [7] a variable

gain approach is presented for holonomic systems, while a

combination of Navigation Functions and Model Predictive

Control (MPC) for constraint satisfaction has been attempted

in [8]. Optimisation methods have also been used for aircraft

collision avoidance, in non-cooperative (worst case) schemes

[9], [10], as well as decentralised, cooperative approaches

[11], [12]. Although optimisation methods are appealing for

handling constraints, they suffer from computational issues

along with combinatorial increase in complexity. As a result

they are unsuitable for real-time implementation in safety

critical applications, like aircraft collision avoidance, but can

offer useful results for offline maneuver calculations.

In this paper we present a control scheme utilizing Nav-

igation Functions for the decentralised control of multiple

nonholonomic agents with velocity constraints. We formulate

the problem in a way pertinent to Air Traffic Management

(ATM), where each aircraft can monitor the position, orienta-

tion and velocity of neighboring aircraft through surveillance.

Towards decentralization and communication minimization,

we assume for each agent (aircraft) no knowledge of the

destinations other than its own. The fact that the method

is fully 3D means that each aircraft can use vertical as

well as horizontal maneuvering to exploit the available

airspace and stay away from conflicts. As the decentralization

of Air Traffic Control is thought to be a solution to the

increasing air traffic load, the control scheme that follows

can be useful in the design of future ATM systems. Another

application where such an algorithm may be considered is the

case of multiple Autonomous Underwater Vehicles (AUVs)

operating in the same area.

Our approach employs Dipolar Navigation Functions [13]

in a control scheme driving the agents away from each other

and towards their destinations. This new control strategy aims

at producing more natural trajectories compared to previous

work based on Navigation Functions [6]. This is achieved by

maintaining the absolute linear velocity of each agent equal

to a desired value (independent for each agent) and avoid-

ing unnecessary turns when possible. The desired absolute

velocity used can be constant or regulated independently.

The proposed control scheme maintains the desired absolute

velocity when possible, and while the agent is sufficiently

away from its destination. Whenever this desired velocity

could compromise the system’s convergence (as checked by

a simple inequality), a higher absolute velocity is applied.

Finally near destination the velocity is reduced for the final

approach. An important result of the above control strategy
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is that the desired velocity acts as a lower bound for the

absolute velocity, eliminating infeasibly low velocities, a

must for Air Traffic Control. Moreover, under some mild

requirements regarding the initial conditions, speed rever-

sals can be eliminated and a specific direction (forward or

backward) can be enforced for each agent. Regarding the

angular velocities, no actuation is used when not necessary,

thus reducing the total control effort. These qualitative im-

provements achieved by our control strategy do not come at

the cost of performance or safety, as the convergence and

collision avoidance characteristics are formally verified.

The rest of the paper is organised as follows: section II

describes the nonholonomic model used for the agents and

the problem treated, followed by an brief introduction to

Dipolar Navigation Functions in section III. In section IV,

the proposed control scheme is presented, while section V

includes computer simulation supporting the derived results

and demonstrate the efficiency of our approach. The conclu-

sions of this paper are summarised in section VI.

II. SYSTEM AND PROBLEM DEFINITION

Each agent i is described by a 3-dimensional kinematic

nonholonomic model. The state ni of agent i, i = 1, ..., N
consists of its position vector ni1 and orientation ni2:

ni =

[
ni1

ni2

]
, ni1 =




xi

yi

zi



 , ni2 =




φi1

φi2

φi3





where
[

φi1 φi2 φi3

]T
are xyz Euler angles. This

Earth-fixed coordinate system follow the NED (North-East-

Down) convention with xi pointing North, yi East, and zi

Down. Consequently φi1, φi2, φi3 express bank, elevation

and azimuth angles of agent i respectively, as shown in

Figure 1. We define the 3 body-fixed axes li1, li2 and li3,

pointing forward, right and downwards relatively to agent i
respectively, as in Figure 2. Input vi of each agent consists of

the body-fixed, longitudinal velocity ui (along axis li1) and

the 3 earth-fixed angular velocities ωik = φ̇ik, k = 1, 2, 3:

vi =
[

ui ωi1 ωi2 ωi3

]T

This selection of inputs resembles well the motion of an

aircraft, as it does not allow any motion along the body-

fixed lateral li2 or perpendicular li3 axes. The kinematics of

l1

Roll - p

u

l2

Pitch - q

l3

Yaw - r

Fig. 2: Body-Fixed Coordinates

the system described above are:

ṅi = Ri · vi (1)

with Ri = Ri(ni2) ∈ R6×4 the transformation matrix [14]:

Ri =

[
Ji 03×3

03×1 I3

]
, Ji(ni2) =




cosφi3 cosφi2

sin φi3 cosφi2

− sinφi2





A. Problem Statement

The problem under consideration in this paper is to design

a control law for each of N spherical agents. Each agent i
has radius ri and state ni, and is described by the kinematic

model (1). The sought control law should steer each agent

i having inputs: ui, ωi1, ωi2, ωi3 to its desired position

and direction (elevation and azimuth), ni1d and φi2d, φi3d

respectively, while avoiding collisions with each other or

with the boundary ∂W of the given spherical workspace

W ⊂ R3 of radius rworld. Each agent is assumed to

have knowledge of the position, orientation and longitudinal

velocity of all other agents, but not of their destinations. To

comply with ATM requirements, we want to minimize the

use of the agents’ forward velocity for collision avoidance.

Instead the forward velocity can be set to an independent,

for each agent i, desired value udi
. This allows for example

speed regulation based on Air Traffic Controller instructions,

Flightplan or fuel efficiency for a given altitude.

The choice of a spherical workspace is considered here to

allow direct application of the Navigation Functions frame-

work, but does not limit the applicability of our algorithm.

As shown in [15] navigation properties are maintained under

diffeomorphisms. The reader is referred to [16] for details on

the construction of such diffeomorphisms.

III. DIPOLAR NAVIGATION FUNCTIONS

Navigation Functions as introduced by Koditschek and

Rimon [4] are not suitable for the control of non-holonomic

agents, as they can lead to undesired behavior, like in-

place rotation. Dipolar Navigation Functions [13] offer a

significant advantage: the integral lines of the resulting

potential field are all tangent to the target orientation at the

destination, eliminating the need for in-place rotation. Thus,

the agent is driven to its target with the desired orientation.

This is achieved by considering the plane the normal vector
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of which is parallel to the desired orientation, and includes

the destination, as an additional artificial obstacle Hnhi
.

Such a Dipolar Navigation Function has the form:

Φi =
γdi + fi

((γdi + fi)k + Hnhi
· Gi · β0i

)
1/k

(2)

where γdi is the attractive destination function, Gi is the

repulsive collision function, β0 is the workspace boundary

obstacle, fi is used to allow some cooperation when needed

between agents and k is a positive tuning parameter. Because

of lack of space here, the reader is referred to [17] for details

on the construction of the above Navigation Function.

Navigation Function (2) has been used in [5] and has

proven properties, i.e., it provides almost global convergence

to the agents’ destinations, along with guaranteed collision

avoidance. The potential of such a Navigation Function in a

workspace with 2 obstacles is shown in Figure 3, where the

effect of the nonholonomic obstacle Hnhi
is visible.
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Fig. 3: 2-D Dipolar Navigation Function

IV. 3D NON-HOLONOMIC NAVIGATION

A. Control Law

The control scheme we suggest is based on the gradient

∇iΦi = ∂Φi

∂ni1
, where the notation ∇iΦj =

∂Φj

∂ni1
stands

for the gradient of potential Φj with respect to agent’s i
position ni1. The potential Φi = Φi(ni1) is the above

Dipolar Navigation Function (2). Since its gradient ∇iΦi is

expressed in earth-fixed coordinates, we use the projection of

∇iΦi on agent’s i longitudinal axis li1: Pi = J
T
i ·∇iΦi, the

sign sgn(Pi) of which determines the direction of movement,

using the modified sign function sgn:

sgn(x) ,

{
1, if x ≥ 0

−1, if x < 0

For the angular velocities control laws we use the nonholo-

nomic elevation and azimuth angles φnhi2, φnhi3 represent-

ing the direction of sgn(pi)∇iΦi:

φnhi3 , atan2 (sgn(pi)Φiy , sgn(pi)Φix) (3a)

φnhi2 , atan2
(

- sgn(pi)Φiz ,
√

Φ2
ix + Φ2

iy

)
(3b)

where atan2(y, x) , arg (x, y) , (x, y) ∈ C yields the

polar angle of a vector. Φix = ∂Φi

∂xi
, Φiy = ∂Φi

∂yi
, Φiz =

∂Φi

∂zi
are the partial derivatives of Φi with respect to agent’s

i position ni1 and pi = JT
id · (ni1 − ni1d) is the current

position vector with respect to the destination, projected on

the longitudinal axis of the desired orientation (li1d). We

also define the nonholonomic bank angle φnhi1, designed to

minimize yaw rotation rate, as explained in [18]:

φnhi1 , atan2 (sgn(pi) cφi2 · ωi3, sgn(pi)ωi2)

The discontinuity of the above angles at the destination,

where the gradient vector is zero, can be avoided by using

the approximation scheme presented in [19]:

φ̂nhik,





φnhik, ρik>ǫ

φ
nhik(−2ρ3

ik
+3ǫρ2

ik)+φikd(−2(ǫ−ρik)3+3ǫ(ǫ−ρik)2)
ǫ3

, ρik≤ǫ

for k = 1, 2, 3, where ρi1 =
√

cφ2
i2 · ω

2
i3 + ω2

i2 , ρi2 =

||∇iΦi||, ρi3 =
√

Φ2
ix + Φ2

iy and ǫ a small positive constant.

Thus at the destination ni1d, where ρik = 0, k = 1, 2, 3, the

angles φ̂nhik are continuous and equal to the desired ones:

φ̂nhik = φikd, k = 1, 2, 3 (4)

We also use the partial derivative
∂Φi

∂t
=

∑

j 6=i

uj∇jΦ
T
i ·Jj

which sums the effect of all other agents’ motion on Φi.

The proposed control law for agent i, i = 1, . . . , N is:

ui =

{
− sgn(Pi) · Ui,

∂Φi

∂t ≤ Ui (|Pi| − ε)

− 1
Pi

[
εUi + ∂Φi

∂t

]
, ∂Φi

∂t > Ui (|Pi| − ε)
(5a)

Ui =

{
udi

, ||ni1 − ni1d|| > ρ
||ni1−ni1d||

ρ · udi
, ||ni1 − ni1d|| ≤ ρ

(5b)

ωi1 = − ki1 (φi1 − φnhi1) (5c)

ωik =





0, Mik ≥ εk

Ωik ·
(
1 − Mik

εk

)
, 0 < Mik < εk

Ωik, Mik ≤ 0

, k = 2, 3 (5d)

where Ui is the nominal absolute velocity value, Ωik ,

−kk (φik − φnhik) + φ̇nhik, Mik , φ̇nhik (φik − φnhik)
while ε, εk for k = 2, 3 are small positive constants and

kk are positive real gains.

Control design principle

The notion behind the above control strategy is to exploit the

Navigation Function’s almost global navigation and collision

avoidance properties, while keeping the velocity input as

independent as possible from the potential field’s qualitative

characteristics. Thus the direction of the gradient is used to

steer the agent and define its direction of movement, but the

gradient’s norm is used for the regulation of velocity only

when necessary. It is easy to verify that each agent i moves

towards the direction of its longitudinal axis that decreases its

Navigation Function Φi: by (5a) we can see that ui ·Pi ≤ 0,

i.e. the velocity ui is always in the opposite direction of Pi

(the gradient’s ∇iΦi projection on the agent’s longitudinal

axis). Thus collision avoidance is guaranteed, as the potential

field is always repulsive with respect to other agents and

achieves its maximum value on their boundary. For the

regulation of the linear velocity a desired value udi
is used,

which is applied whenever the agent is outside of a ball of
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radius ρ around its destination ni1d, and ∂Φi

∂t ≤ Ui (|Pi| − ε)
holds. This last condition essentially ensures that the partial

derivative ∂Φi

∂t is not larger than what the motion of the agent

can negate, allowing its Navigation Function decreases over

time. The desired velocity udi
can be either constant, or regu-

lated independently, and acts as a lower bound of the agent’s

absolute velocity |ui|, as when ∂Φi

∂t > Ui (|Pi| − ε) we

deduce that |ui| =
∣∣∣ 1
Pi

[
εUi + ∂Φi

∂t

]∣∣∣ > Ui. This is extremely

important in applications where the agents’ velocity cannot

be lower than a certain value, like aircraft navigation. We

should note that the switching in (5a) and (5b) is continuous:

ui and Ui are continuous when ∂Φi

∂t = Ui (|Pi| − ε) and

||ni1 − ni1d|| = ρ respectively.

Regarding the control law for elevation and azimuth angu-

lar velocities (5d), we have introduced a switching scheme in

order to limit unnecessary maneuvering: Whenever Mik ≥
εk > 0, the absolute angle difference |θik| , θik =
(φik − φnhik) is decreasing without the need of any actu-

ation ωik . When Mik ≤ 0, the control law used in previous

work of the authors [18] is employed. Similarly to the linear

velocity control scheme, we use a small positive constant εk

to ensure continuous transition from zero angular velocity

to the full actuation Ωik . The magnitude of εk adjusts the

tolerance of the algorithm to small, but decreasing rates of

change for |θik|. Setting εk to a very small value allows

ωik to remain zero even for very small, but positive Mik.

Similarly, a very large εk essentially prevents the use of

zero ωik, as Mik ≥ εk cannot hold. This switching control

scheme is not intended to provide an optimal selection of

angular velocities, but as the simulation results of the next

section reveal, it does manage to limit the total control effort

for steering. Calculating the dynamics of θik we deduce:

θ̇ik =





−φ̇nhik, Mik ≥ εk

−
[
kk

(
1 − Mik

εk

)
+

φ̇2
nhik

εk

]
· θik, 0 < Mik < εk

−kkθik, Mik ≤ 0

Therefore the absolute difference |θik| is always decreasing

and the agents align with the field’s gradient. Finally, the

bank rotation rate used is designed to keep the need for yaw

rotation rate low, as explained in [18].

Avoidance of infinite velocity - direction reversal

From the control law (5a) we can see that the velocity ui

can tend to infinite values when Pi → 0, i.e., when the

projection of the field’s gradient on the agent’s longitudinal

axis is very small. This is the case when the gradient vector

is normal to the agent’s longitudinal axis: ∇iΦi⊥li1. By the

analysis in the previous paragraph, θik is stabilised to 0,

and |θik| is always decreasing for k = 2, 3. Therefore if

the absolute angle between the field’s gradient and li1 is

initially smaller than π
2 , it will always remain in

[
0, π

2

)
. Thus

the set ∇iΦi⊥li1, where Pi → 0, will never be reached.

Essentially, what is required is Pi · pi > 0 at the initial

conditions, i.e. agents starting in the subspace behind their

targets ( where pi < 0) must have the initial negated gradient

vector driving them forward (Pi < 0), while agents starting

in front of their target (pi > 0) must have the initial negated

gradient vector driving them backward (Pi > 0). If we want

additionally to enforce only forward (or backward) motion,

we have to ensure that all agents start in the subspace behind

(in front) of their target. These mild prerequisites should not

pose considerable difficulties in air traffic applications, since

they represent natural requirements.

B. Stability Analysis

Theorem 1: Each agent i described by model (1) under

the control law (5) is asymptotically stabilised to its target

ni1d, φi2d, φi3d.

Proof: As the control scheme is discontinuous, we

will use Lyapunov analysis for nonsmooth systems to prove

the stability of the system under the control law (5). The

following Lyapunov function candidate is used:

V =

N∑

i=1

Vi, Vi = Φi +
1

2

3∑

k=2

(φik − φnhik)2 (6)

The generalised derivative of V = V (q) [20], where q =

[n
T
i1 ... n

T
N1 φ12 φ13 ... φN2 φN3 φnh12 φnh13 ... φnhN2 φnhN3 ]

T

is ∂V =




∑
i
∇1Φi

...∑
i
∇N Φi

1/2∇φ12
(φ12−φnh12)2

1/2∇φ13
(φ13−φnh13)2

...
1/2∇φN2

(φN2−φnhN2)
2

1/2∇φN3
(φN3−φnhN3)

2

1/2∇φ
nh12

(φ12−φnh12)2

1/2∇φ
nh13

(φ13−φnh13)2

...
1/2∇φ

nhN2
(φN2−φnhN2)

2

1/2∇φ
nhN3

(φN3−φnhN3)
2




=




∑
i ∇1Φi

...∑
i
∇N Φi

(φ12−φnh12)
(φ13−φnh13)

...
(φN2−φnhN2)
(φN3−φnhN3)
−(φ12−φnh12)
−(φ13−φnh13)

...
−(φN2−φnhN2)
−(φN3−φnhN3)




We consider the multi-agent system ẋ = f(x) resulting from

the composition of (1) and the associated Filippov set [21]:

x =




n11

...
nN1

φ12

φ13

...
φN2

φN3

φnh12

φnh13

...
φnhN2

φnhN3




, f(x) =




u1J1

...
uN JN

ω12
ω13

...
ωN2
ωN3

φ̇nh12

φ̇nh13

...
φ̇nhN2

φ̇nhN3




, K[f ] =




K[u1]J1

...
K[uN ]JN

ω12
ω13

...
ωN2
ωN3

φ̇nh12

φ̇nh13

...
φ̇nhN2

φ̇nhN3




By the control law (5a) we deduce:

K[ui] =

{
K[−sgn(Pi)] · Ui,

∂Φi

∂t ≤ Ui (|Pi| − ε)

− 1
Pi

·
[
εUi + ∂Φi

∂t

]
, ∂Φi

∂t > Ui (|Pi| − ε)
(7)

Using the chain rule given in [22] we can calculate the
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generalised time derivative of V as follows:

˙̃
V =

⋂

ξ∈∂V

ξT K[f ] =

=
∑

i

∑

j

K[ui]∇iΦ
T
j Ji+

+
∑

i

3∑

k=2

(φik − φnhik
) (ωik − φ̇nhik

) =

=
∑

i

K[ui]∇iΦ
T
i Ji +

∑

i

∑

j 6=i

K[uj]∇jΦ
T
i Jj−

−
∑

i

3∑

k=2

θikθ̇ik

Because of the switching linear velocity control law, we

discriminate between the following sets of agents:

Q1 ,
{
i ∈ {1, . . . , N}

∣∣∂Φi

∂t ≤ Ui (|Pi| − ε)
}

Q2 ,
{
i ∈ {1, . . . , N}

∣∣∂Φi

∂t > Ui (|Pi| − ε)
}

with Q1

⋂
Q2 = ∅. Similarly, we define the following non-

intersecting sets of (i, k) pairs:

T1 , {i ∈ {1, . . . , N} , k ∈ {2, 3} | Mik ≥ εk }
T2 , {i ∈ {1, . . . , N} , k ∈ {2, 3} | 0 < Mik < εk }
T3 , {i ∈ {1, . . . , N} , k ∈ {2, 3} | Mik ≤ 0}

Using the above set definitions, and the calculation of θ̇ik

in the previous chapter, we can proceed with
˙̃
V :

˙̃
V

(7)
=

∑

Q1

{
K[−sgn(Pi)] · PiUi +

∂Φi

∂t

}
−

−
∑

Q2

{
1

Pi

[
εUi −

∂Φi

∂t

]
Pi +

∂Φi

∂t

}
−

∑

T1

φ̇nhikθik−

−
∑

T2

[
kk

(
1 −

Mik

εk

)
+

φ̇2
nhik

εk

]
θ2

ik −
∑

T3

kkθ2
ik =

=
∑

Q1

{
− |Pi|Ui +

∂Φi

∂t

}
−

∑

Q2

εUi −
∑

T1

Mik−

−
∑

T2

[
kk

(
1 −

Mik

εk

)
θ2

ik +
M2

ik

εk

]
−

∑

T3

kkθ2
ik

Taking into account the conditions that hold within each

set, we derive that
˙̃
V ≤ 0. Since each Vi and consequently

V is regular [20] and the level sets of V are compact, the

nonsmooth version of LaSalle’s invariance principle [22] can

be applied. We can conclude that the trajectory of the closed-

loop system converges to the largest invariant subset S: S ,{
n | 0 ∈

˙̃
V

}
. By the definitions of T1, T2, T3 we deduce that

∑
T1

Mik > 0 and
∑

T2

[
kk

(
1 − Mik

εk

)
θ2

ik +
M2

ik

εk

]
> 0.

Consequently, for
˙̃
V = 0 to hold, all (i, k) must be in T3.

Therefore the set S is:

S ={n : (|Pi|Ui −
∂Φi

∂t
= 0∀i ∈ Q1) ∧ (εUi = 0∀i ∈ Q2)∧

∧ (θik = φik − φnhik
= 0∀i, k = 2, 3)}

For i ∈ Q1 we have |Pi|Ui −
∂Φi

∂t ≥ εUi, so inside S the

equality must hold, as εUi is always non-negative and zero

iff Ui = 0. Similarly, for εUi = 0 to hold for i/inQ2, Ui

must be zero too. Thus, inside S we have Ui = 0, and φik =
φnhik

∀i, k = 2, 3. Condition Ui = 0 holds only when ni1 =
ni1d, i.e. when each agent i has reached its target position

ni1. Finally, by (4) and condition φik = φnhik
∀i, k =

2, 3, we deduce that the set S reduces to the single-

ton {n : (ni1 = ni1d∀i) ∧ (φik = φikd∀i, k = 2, 3)}, i.e., all

agents are stabilised to their destinations with the desired

elevation and azimuth angles.

V. SIMULATION

The proposed control scheme has been used in a simulated

scenario in order to verify its performance. We used a test

case with 5 agents of radius ri = 0.05, i = 1, . . . , 5. The

initial positions and destinations have been selected so that

the straight line paths create multiple conflicts around the

centre of the workspace. The desired velocity of all the

agents has been set to a constant value of 5 · 10−4, while

for the final approach we have used ρ = 0.01.

The results can be seen in Figure V, with all agents

being driven towards their destinations following feasible, 3D

nonholonomic paths. The efficiency of the control scheme

presented here can be seen in Figure 5, where the linear

velocity of all agents is maintained equal to the constant

desired value, until they approach their targets and start

to slow down as intended. All the agents started with

their destinations in front of them, and the initial velocity

vector pointed forward too. As explained in Section IV,

this resulted in all the agents moving forward without any

direction reversals. In order to demonstrate the efficiency

of the angular velocities control law, we run the same

simulation after setting ε to a very large value. As discussed

in Section IV, this effectively prevents the use of zero angular

velocities at any time. To asses the performance in those

two cases we used the absolute total control effort used in

elevation and azimuth by all agents during the simulation:

A =

5∑

i=1

3∑

k=2

∫
|ωik| dt. The control scheme used in previous

work [6] resulted in A = 11.4rad, while the one introduced

here yielded A = 18.8rad, achieving a significant reduction

of about 40% in steering control effort. It is important to

note that these qualitative improvements did not affect the

collision avoidance characteristics of the control strategy. As

shown in Figure 6, distances between agents (solid lines) are

always higher than the minimum safety clearance (dashed

line), which is double the radius of each agent 2 · ri = 0.1,

and no collisions occur.

VI. CONCLUSIONS

We have presented a decentralised control strategy that

drives nonholonomic, aircraft-like agents towards their de-

sired configuration with a desired linear velocity varied inde-

pendently. This desired linear velocity, constant or otherwise

regulated, is directly applied most of the time and defines

a lower bound for the absolute actual velocity. The angular

velocities used can be zero when not required, thus reducing

the total required control effort. It is interesting to note here
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that if the agents are not able to alter their linear velocity

from the constant desired value udi
, the collision avoidance

guarantees still hold, as ui · Pi ≤ 0 and the Navigation

Function is always repulsive with respect to other agents.

In this case though, the stability analysis presented here is

not valid and therefore convergence is not guaranteed.

Future work in this area focuses on incorporating ad-

ditional constraints, like a maximum curvature bound, to

enhance the applicability of our algorithm in aircraft control.
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